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Abstract
The Riemann–Hilbert problems for multiple orthogonal polynomials of types
I and II are used to derive string equations associated with pairs of Lax–
Orlov operators. A method for determining the quasiclassical limit of string
equations in the phase space of the Whitham hierarchy of dispersionless
integrable systems is provided. Applications to the analysis of the large-n
limit of multiple orthogonal polynomials and their associated random matrix
ensembles and models of non-intersecting Brownian motions are given.

PACS number: 02.30.Ik

1. Introduction

The set of orthogonal polynomials Pn(x) = xn + · · · , with respect to an exponential weight∫ ∞

−∞
Pn(x)Pm(x) eV (c,x)dx = hnδnm, V (c, x) :=

∑
k�1

ckx
k,

is an essential ingredient of the methods [1, 2] for studying the large-n limit of the Hermitian
matrix model

Zn =
∫

dM exp(Tr V (c,M)). (1)

One of the main tools used in these methods is the pair of equations

zPn(z) = ZPn(z), ∂zPn(z) = MPn(z), n � 0, (2)

where (Z,M) is a pair of Lax–Orlov operators of the form

Z = � + un + vn�
∗, M = −

∑
k�1

kck(Zk−1)+. (3)
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Here � is the shift matrix acting in the linear space of sequences, �∗ is its transposed matrix
and ( )+ denotes the lower part (below the main diagonal) of semi-infinite matrices.

The first equation in (2) represents the standard three-term relation for orthogonal
polynomials. Both equations are referred to as the string equations in the matrix models
of 2D quantum gravity [1] and provide the starting point of several techniques to characterize
the large-n limit of (1). A deeper mathematical insight into these methods was achieved
after the introduction by Fokas, Its and Kitaev [3] of a matrix-valued Riemann–Hilbert (RH)
problem which characterizes orthogonal polynomials on the real line, and the formulation by
Deift and Zhou [2, 4] of steepest descent methods for studying asymptotic properties of RH
problems.

The RH problem of Fokas–Its–Kitaev was generalized by Van Assche, Geronimo and
Kuijlaars [5] to characterize multiple orthogonal polynomials. Moreover, it was found [6–10]
that these families of polynomials are closely connected to important statistical models such
as Gaussian ensembles with external sources and one-dimensional non-intersecting Brownian
motions.

In this paper, we generalize the string equations (2) to multiple orthogonal polynomials
of types I and II, and show how these equations can be applied to analyse the large-n limit of
multiple orthogonal polynomials and their associated statistical models. Section 2 introduces
the basic strategy of our approach to derive string equations, which is inspired by standard
methods used in the theory of multi-component integrable systems [11–15]. As it was proved
in [5], the multiple orthogonal polynomials of types I and II are elements of the first row of
the fundamental solution f of the corresponding RH problem. Then, in sections 3 and 4 we
formulate systems of string equations for the elements of the first row of the fundamental
solution f . In both cases the function f depends on a set of discrete variables

s = (s1, s2, . . . , sq) ∈ Z
q, where

{
si � 0 for type I polynomials
si � 0 for type II polynomials.

Therefore, special care is required to determine the form of the string equations on the
boundary of the domain of the discrete variables. Thus, we obtain closed-form expressions,
free of boundary terms, for the string equations satisfied by these types of multiple orthogonal
polynomials. These string equations are associated with pairs (Zi ,Mi ) of Lax–Orlov
operators. In particular, those involving the Lax operatorsZi lead to the well-known recurrence
relations for multiple orthogonal polynomials [5].

We take advantage of an interesting observation due to Takasaki and Takebe [16] who
showed that the dispersionless limit of a row of a matrix-valued KP wavefunction is a solution
of the zero genus Whitham hierarchy [11]. This is an additional incentive for using Lax–
Orlov operators [12–15] in order to characterize the large-n limit in terms of quasiclassical
(dispersionless limit) expansions. Thus, in section 5 we show how the leading term of the
expansion of the first row of f is determined by a system of dispersionless string equations
for q + 1 Lax–Orlov functions (zα,mα) in the phase space of the Whitham hierarchy. The
unknowns of this system reduce to a set of q pairs of functions (uk, vk), which are determined
by means of a system of hodograph-type equations. Our analysis uses a particular ansatz for the
quasiclassical form of the first row of f . It holds for the so-called one-cut case in the theories
of orthogonal polynomials [18] and random matrix models [19], in which the corresponding
limiting densities of zeros and eigenvalues are supported on one interval [a, b] ⊂ R. In the
multicut case this ansatz is not valid and quasiclassical expansions such as (90) involving only
power series in ε do not arise [20]. Finally, section 6 is devoted to illustrate the applications
of our method to reproduce in a simple way several results from models of random matrix
ensembles and non-intersecting Brownian motions.
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The present work deals with multiple orthogonal polynomials of types I and II only, but the
same considerations apply to the study of multiple orthogonal polynomials of mixed type [17].
On the other hand, we concentrate on the description of the leading terms of the quasiclassical
expansions. However, as was shown in [21, 22] for the case of the Toda hierarchy and the
Hermitian matrix model, the scheme used in the present paper can be further elaborated for
determining the general terms of these expansions, as well as their critical points and their
corresponding double scaling limit regularizations.

2. Riemann–Hilbert problems

In this work we will consider (q + 1) × (q + 1) matrix-valued functions. Unless otherwise
stated Greek α, β, . . . and Latin i, j, . . . suffixes will label indices of the sets {0, 1, . . . , q} and
{1, 2, . . . , q}, respectively. We will denote by Eαβ the matrices (Eαβ)α′β ′ = δαα′δββ ′ of the
canonical basis and, in particular, its diagonal members will be denoted by Eα := Eαα . Some
useful relations which will be frequently used in the subsequent discussion are

EαβEγλ = δβγ Eαλ; EαaEβ = aαβEαβ, ∀ matrix a.

We will also denote by V (c, z) the scalar function

V (c, z) :=
∑
n�1

cnz
n, c = (c1, c2, . . .) ∈ C

∞, (4)

and will assume that only a finite number of the coefficients cn are different from zero.
Given a matrix function g = g(z)(z ∈ R) such that detg(z) ≡ 1, we will consider the RH

problem

m−(z)g(z) = m+(z), z ∈ R, (5)

where m(z) is a sectionally holomorphic function and m±(z) := limε→0+ m(z ± iε).
We are interested in solutions f = f (s, z) of (5) depending on q discrete variables
s = (s1, . . . , sq) ∈ Z

q such that

f (s, z) =
(

I + O
(

1

z

))
f0(s, z), z → ∞, (6)

where

f0(s, z) :=
q∑

α=0

zsαEα,

(
s0 := −

q∑
i=1

si

)
.

The set of points s ∈ Z
q for which (5) admits a solution f (s, z) satisfying (6) will be denoted

by 
. The solution f (s, z), (s ∈ 
) is unique and will be referred to as the fundamental
solution of the RH problem (5).

We will apply (5) and (6) to derive certain difference-differential equations for f . These
equations contain two basic ingredients: the coefficients of the asymptotic expansion of f (s, z)

as z → ∞

f (s, z) =
⎛⎝I +

∑
n�1

an(s)

zn

⎞⎠ f0(s, z), (7)

and the q pairs of shift operators Ti, T
∗
i acting on functions h(s)(s ∈ 
) defined as

(Tih)(s) :=
{
h(s − ei ) if s − ei ∈ 


0 if s − ei /∈ 
,

(T ∗
i h)(s) :=

{
h(s + ei ) if s + ei ∈ 


0 if s + ei /∈ 
,

3
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where ei are the elements of the canonical basis of C
q .

We will often consider series of the form

A :=
∞∑

n=1

cn(s)(T ∗
i )n + c′

0 +
∞∑

n=1

c′
n(s)T n

i ,

and will denote

(A)(i,+) :=
∞∑

n=1

cn(s)(T ∗
i )n, (A)(i,−) := c′

0 +
∞∑

n=1

c′
n(s)T n

i . (8)

The RH problem (5) admits the following symmetries:

Proposition 1. Assume f (s, z)(s ∈ 
) is a solution of the Riemann–Hilbert problem (5).

(1) If h(s, z)(s ∈ 
) is an entire function of z, then h(s, z)f (s, z) satisfies (5) for all s ∈ 
.
(2) The functions (Tif )(s, z) and (T ∗

i f )(s, z) satisfy (5) for all s ∈ 
.
(3) If g(z) is an entire function, then for any entire function φ(z) such that

g−1φg = φ − g−1∂zg, (9)

the covariant derivative

Dzf := ∂zf − f φ, (10)

satisfies (5) for all s ∈ 
.

Our strategy to obtain difference-differential equations for f is based on applying the
next simple statement to the symmetries of (5).

Proposition 2. Let f̃ (s, z) be a solution of (5) defined for s in a certain subset 
0 ⊂ 
. If
f̃ (s, z)f (s, z)−1 − P(s, z) → 0 as z → ∞, where P(s, z) is a polynomial in z, then

f̃ (s, z) = P(s, z)f (s, z).

Proof. Since detg(z) ≡ 1 it follows from (5) and (6) that detf (s, z) ≡ 1 so that the inverse
matrix f (s, z)−1 is analytic for z ∈ C − R and satisfies the jump condition

g(z)−1f−(s, z)−1 = f+(s, z)−1, z ∈ R.

As a consequence f̃ f −1 is an entire function of z and the statements follow at once. �

3. Multiple orthogonal polynomials of type I

Given q exponential weights wi on the real line

wi(x) := e−V (ci ,x), ci = (ci1, ci2, . . .) ∈ C
∞,

and n = (n1, . . . , nq) ∈ N
q with |n| � 1, if

A(n, x) = (A1(n, x), . . . , Aq(n, x))

are polynomials such that

Aj(n, x) has degree nj − 1 for nj � 1 and Aj(n, z) ≡ 0 for nj = 0 (11)

which satisfy the orthogonality relations∫
R

dx

2π i
xl

⎛⎝ q∑
j=1

Aj(n, x)wj (x)

⎞⎠ =
{

0 l = 0, 1, . . . , |n| − 2,

1 l = |n| − 1,
(12)

4
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then Aj(n, x) are called orthogonal polynomials of type I. We assume that the solution
A(n, x) of (11) and (12) is unique for each n such that |n| � 1 (strongly normal condition
for multi-indices [17]).

The RH problem which characterizes these polynomials [5] is determined by

g(z) =

⎛⎜⎜⎜⎝
1 0 0 . . . 0

−w1(z) 1 0 . . . 0
...

...
...

...

−wq(z) 0 . . . 0 1

⎞⎟⎟⎟⎠ . (13)

The corresponding fundamental solution f (s, z) exists on the domain


I = {s ∈ Z
q : si � 0,∀ i = 1, . . . , q}. (14)

For s 
= 0 it is given by

f (s, z) =

⎛⎜⎜⎜⎝
R(s, z) A(s, z)

d−1
1 R(s + e1, z) d−1

1 A(s + e1, z)

...
...

d−1
q R(s + eq, z) d−1

q A(s + eq, z)

⎞⎟⎟⎟⎠ ,

R(s, z) :=
∫

R

dx

2π i

∑q

j=1 Aj(s, x)wj (x)

z − x
,

(15)

where dj is the leading coefficient of Aj(s + ej , z). Furthermore, for s = 0

f (0, z) =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 · · · 0

R1(z) 1 0 · · · 0
R2(z) 0 1 · · · 0

...
...

...
...

Rq(z) 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎠ , Rj (z) :=
∫

R

dx

2π i

wj(x)

z − x
. (16)

Because of the form of 
I we have that

(T ∗
i h)(s) = h(s + ei ), (Tih)(s) :=

{
h(s − ei ) if si � 1
0 if si = 0,

for functions h(s)(s ∈ 
I ). It is clear that

T ∗
i Ti = I, TiT

∗
i = (1 − δsi ,0)I,

where I stands for the identity operator. Sometimes it is helpful to think of the functions h(s)

as column vectors (h|si=0, h|si=1, h|si=2, . . .)
T . Thus, in this representation, Ti, T

∗
i become

the infinite-dimensional matrices

T ∗
i =

⎛⎜⎜⎜⎝
0 1 0 . . . . . .

0 0 1 0 . . .

0 0 0 1 . . .

...
...

...
...

...

⎞⎟⎟⎟⎠ , Ti =

⎛⎜⎜⎜⎝
0 0 0 . . . . . .

1 0 0 0 . . .

0 1 0 0 . . .

...
...

...
...

...

⎞⎟⎟⎟⎠ .

5
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3.1. The first system of string equations

From the asymptotic expansion (7) we have that as z → ∞

(Tif )f −1 =
(
I +

a(s − ei )

z
+ O

(
1

z2

))(
zE0 +

Ei

z
+ I − E0 − Ei

)(
I − a(s)

z
+ O

(
1

z2

))
= zE0 + a(s − ei )E0 − E0a(s) + I − E0 − Ei + O

(
1

z

)
, ∀ s ∈ 
I + ei ,

where we denote

a(s) := a1(s).

Hence by applying proposition 2 it follows that

(Tif )(s, z) = (zE0 + a(s − ei )E0 − E0a(s) + I − E0 − Ei)f (s, z), s ∈ 
I + ei

which implies

(TiE0f )(s, z) =
(

(z − ui(s))E0 −
∑

j

a0j (s)E0j

)
f (s, z), ∀ s ∈ 
I + ei , (17)

where

ui(s) := a00(s) − a00(s − ei ).

Similarly one finds

(T ∗
j E0f )(s, z) = a0j (s + ej )E0j f (s, z), ∀ s ∈ 
I . (18)

Note that as detf (s, z) ≡ 1 for all (s, z) ∈ 
I × C then, as a consequence of (18) we deduce
that

a0j (s + ej ) 
= 0, ∀ s ∈ 
I .

If we now define

vj (s) := a0j (s)

a0j (s + ej )
, s ∈ 
I , (19)

then from (17) it follows that

Proposition 3. The function f satisfies the equations

z(E0f )(s, z) =
(

Ti + ui(s) +
∑

j

vj (s)T ∗
j

)
(E0f )(s, z), (20)

for all s ∈ 
I + ei and i = 1, . . . , q.

As a consequence we get the following system of string equations.

Theorem 1. The multiple orthogonal polynomials of type I satisfy

zA(n, z) =
(

Ti + ui(n) +
∑

j

vj (n)T ∗
j

)
A(n, z), (21)

for all n ∈ 
I + ei and i = 1, . . . , q.

For q = 1 equation (21) reduces to the classical three-term recurrence relation for systems
of orthogonal polynomials on the real line.

6
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On the other hand equation (21) implies

A(n − ei , z) − A(n − ej , z) = (a00(n − ei ) − a00(n − ej ))A(n, z),

∀ n ∈ 
I + ei + ej , i 
= j.
(22)

The relations (21) and (22) lead to a recursive method to construct the multiple orthogonal
polynomials of type I. Indeed, it is clear that for n = niei we have

A(niei , z) = A
(i)
1 (ni, z)ei = (0, . . . , 0, A

(i)
1 (ni, z), 0, . . . , 0

)
,

where A
(i)
1 (ni, z) are the orthogonal polynomials with respect to the weight wi(x). Then

starting from A
(i)
1 (ni, z) and using (22) we can generate the multiple orthogonal polynomials

of type I for higher q.

Example. Let us denote by Ij,n the moments with respect to the weight wj

Ij,n :=
∫

R

dx

2π i
xnwj (x). (23)

We have that

A1(1, z) = 1

I1,0
, A1(2, z) = I1,0z − I1,1

I1,0I1,2 − I 2
1,1

.

The recurrence relation (21) for q = 1 is

A1(n + 1, z) = a01(n + 1)

a01(n)
[(z + a00(n − 1) − a00(n))A1(n, z) − A1(n − 1, z)], ∀ n � 2,

(24)

where according to (15)

a00(n) =
∫

R

dx

2π i
xnA(n, x)w1(x). (25)

Moreover, the normalization condition gives us

a01(n)

a01(n + 1)
=
∫

dx

2π i
xn[(x + a00(n − 1) − a00(n))A(n, x) − A(n − 1, x)]w1(x). (26)

The system (24–26) allows us to construct the polynomials A(n, z) for n � 3. For example
one obtains

A1(3, z) =
(
I 2

1,1 − I1,0I1,2
)
z2 − I1,1I1,3 + (I1,0I1,3 − I1,1I1,2)z + I 2

1,2

I 3
1,2 − (2I1,1I1,3 + I1,0I1,4)I1,2 + I1,0I

2
1,3 + I 2

1,1I1,4
.

If we write (22) in the form

A(n, z) = A(n − ei , z) − A(n − ej , z)

a00(n − ei ) − a00(n − ej )
, n ∈ 
I + ei + ej , (27)

and take into account that

a00(n) =
∫

R

dx

2π i
x|n|

q∑
k=1

Ak(n, x)wk(x), (28)

we can construct all the multiple orthogonal polynomials of type I. Thus, for example for
q = 2 we obtain

A(1, 1, z) = 1

C1
(I2,0,−I1,0),

A(2, 1, z) = 1

C2

(
I1,2I2,0 − I1,1I2,1 + z(I1,0I2,1 − I1,1I2,0), I

2
1,1 − I1,0I2,0

)
,

7
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where

C1 := I1,1I2,0 − I1,0I2,1,

C2 := I2,2I
2
1,1 − I1,3I2,0I1,1 − I1,2I2,1I1,1 + I 2

1,2I2,0 + I1,0I1,3I2,1 − I1,0I1,2I2,2.

3.2. Lax operators

The functions f0i (s, z) = Ai(s, z) can be written as series expansions of the form

f0i (s, z) =
(

αi1(s)

z
+

αi2(s)

z2
+ · · ·

)
zsi ,

where

αin(s) = 0, ∀ n � si + 1. (29)

On the other hand, it is easy to see that

T n
i zsi = 1

zn

(
zsi −

n−1∑
k=0

zkδsi−k,0

)
. (30)

Hence, from (29) and (30) it is clear that
αi,n+1(s + ei )

zn
zsi = αi,n+1(s + ei )T

n
i zsi , ∀ n � 1,

so that we may write

f0i (s + ei , z) = (Giξi)(s, z), ξi(s, z) := zsi , s ∈ 
I ,

where the symbols Gi are dressing operators defined by the expansions

Gi =
∑
n�1

αin(s + ei )T
n−1
i , αin(s + ei ) := (an)0i (s + ei ), (31)

or, equivalently, by the triangular matrices

Gi =

⎛⎜⎜⎜⎝
G00 0 0 . . . . . .

G10 G11 0 0 . . .

G20 G21 G22 0 . . .

...
...

...
...

...

⎞⎟⎟⎟⎠ , Gnm = αi,n−m+1(s + ei )|si=m.

The inverse operators can be written as

G−1
i :=

∑
n�1

βin(s)T n−1
i , βi1(s) = 1

αi1(s + ei )
= 1

a0i (s + ei )
.

We define the Lax operators Zi by

Zi := GiT
∗
i G−1

i . (32)

It follows at once that they can be expanded as

Zi = γi(s)T ∗
i +
∑
n�0

γin(s)T n
i , (33)

where

γi(s) = αi1(s + ei )(T
∗
i βi1)(s) = αi1(s + ei )

αi1(s + 2ei )
= vi(s + ei ). (34)

Proposition 4. The functions f0i satisfy the equations

zf0i (s + ei , z) = (Zif0i )(s + ei , z), ∀ s ∈ 
I . (35)

Proof. From the definition of Gi we have

zf0i (s + ei , z) = Gi(zξi) = (GiT
∗
i )(ξi) = (Zif0i )(s + ei , z). �

8



J. Phys. A: Math. Theor. 42 (2009) 205204 L Martı́nez Alonso and E Medina

3.3. The second system of string equations

Let us consider diagonal solutions

�(z) =
∑

α

φα(z)Eα

of condition (9) corresponding to the function g(z) of (13). They are characterized by

∂zwi − φ0wi + φiwi = 0, i = 1, . . . , q.

In this way, by setting φ0 ≡ 0 we obtain

�(z) =
∑

i

V ′(ci , z)Ei.

The corresponding covariant derivative is

Dzf := ∂zf −
∑

i

V ′(ci , z)f Ei. (36)

Hence we have

Dz(E0f ) = ∂zf00E0 +
∑

i

(∂zf0i − V ′(ci , z)f0i )E0i . (37)

It is clear that (35) implies

znf0i (s + ei , z) = (Zn
i f0i

)
(s + ei , z), ∀ s ∈ 
I . (38)

On the other hand, as z → ∞

((T ∗
j )nf0α)(s, z) =

⎧⎪⎪⎨⎪⎪⎩
O
(

1

zn

)
zs0 , for α = 0,

O
(

1

z

)
zsi , for α = i 
= j,

n � 1,

(T n
i f0i )(s, z) =

⎧⎪⎨⎪⎩O
(

1

zn+1

)
zsi , for si � n,

0, for si < n,

n � 0.

(39)

Proposition 5. The function f satisfies the equation

(Dz + H)(E0f )(s, z) = 0, ∀ s ∈ 
I +
∑

j

ej , (40)

where H is the operator

H :=
q∑

j=1

V ′(cj ,Zj )(j,+). (41)

Here ( )(j,+) denote the projections defined in (8).

Proof. Given s ∈ 
I +
∑

j ej let us denote

s(i) := s − ei ∈ 
I +
∑
k 
=i

ek.

9
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From (37) it follows that

(Dz + H)(E0f ) =
[
∂zf00 +

q∑
j=1

V ′(cj ,Zj )(j,+)f00

]
E0

+
q∑

i=1

[
∂zf0i +

q∑
j=1

V ′(cj ,Zj )(j,+)f0i − V ′(ci , z)f0i

]
E0i . (42)

Now from (39) we have

∂zf00 +
q∑

j=1

V ′(cj ,Zj )(j,+)f00 = O
(

1

z

)
zs0 ,

∂zf0i +
∑
j 
=i

V ′(cj ,Zj )(j,+)f0i = O
(

1

z

)
zsi ,

(V ′(ci ,Zi )(i,+) − V ′(ci , z))f0i (s, z) = (V ′(ci ,Zi ) − V ′(ci , z))f0i (s, z) + O
(

1

z

)
zsi .

Moreover, from (38) it is clear that

(V ′(ci ,Zi ) − V ′(ci , z))f0i (s, z) = (V ′(ci ,Zi ) − V ′(ci , z))f0i (s
(i) + ei , z)

=
∑
n�1

ncin

(
Zn−1

i − zn−1
)
f0i (s

(i) + ei , z) = 0.

Therefore we find

(Dz + H)(E0f )(s, z) = O
(

1

z

)
f0(s, z), z → ∞.

The first member f̃ := (Dz+H)(E0f ) of this equation is a solution of (5) for all s ∈ 
I +
∑

j ej

and f̃ (s, z)f (s, z)−1 → 0 as z → ∞. Therefore, the statement of proposition 2 implies
f̃ ≡ 0. �

As a consequence we deduce the following system of string equations.

Theorem 2. The multiple orthogonal polynomials of type I satisfy

∂zAi(n, z) = V ′(ci ,Zi )Ai(n, z) −
q∑

j=1

V ′(cj ,Zj )(j,+)Ai(n, z), (43)

for all n ∈ 
I +
∑

k ek and i = 1, . . . , q.

3.4. Orlov operators

We define the Orlov operators Mi by

Mi := Gi · si · Ti · G−1
i . (44)

They satisfy [Zi ,Mi] = I and can be expanded as

Mi =
∑
n�1

μin(s)T n
i , (45)

where

μi1(s) = si

vi(s)
. (46)

10
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Proposition 6. The functions f0i satisfy the equations

∂zf0i (s + ei , z) = (Mif0i )(s, z + ei ), ∀ s ∈ 
I . (47)

Proof. From the definition of Gi we have

∂zf0i (s + ei , z) = Gi(siz
−1ξi) = Gi · si(Tiξi)

= Gi · si · Ti · G−1
i f0i (s + ei , z) = Mif0i (s + ei , z). �

4. Multiple orthogonal polynomials of type II

We consider now q exponential weights wi on the real line

wi(x) := eV (ci ,x), ci = (ci1, ci2, . . .) ∈ C
∞.

Note the difference in the sign of the exponents with respect to the weights for multiple
orthogonal polynomials of type I. Given n = (n1, . . . , nq) ∈ N

q , if P(n, x) = x|n| + · · · is a
monic polynomial satisfying∫

R

P(n, x)wi(x)xj dx = 0, j = 0, . . . , ni − 1, (48)

then P(n, x) is called a type II orthogonal polynomial. We assume that the solution P(n, x)

of (48) is unique for each n ∈ N
q (strongly normal condition for multi-indices [17]).

The RH problem for the multiple orthogonal polynomials of type II is determined by [17]

g(z) =

⎛⎜⎜⎜⎝
1 w1(z) w2(z) . . . wq(z)

0 1 0 . . . 0
...

...
...

...
...

0 0 . . . 0 1

⎞⎟⎟⎟⎠ . (49)

Its fundamental solution f (s, z) exists on the domain


II = {s ∈ Z
q : si � 0,∀ i = 1, . . . , q}. (50)

For si � −1,∀ i = 1, . . . , q, it is given by

f (s, z) =

⎛⎜⎜⎜⎝
P(n, z) R(n, z)

d1P(n − e1, z) d1R(n − e1, z)

...
...

dqP (n − eq, z) dqR(n − eq, z)

⎞⎟⎟⎟⎠ , s = −n,

Rj (n, z) :=
∫

R

dx

2π i

P(n, x)wj (x)

x − z
,

1

dj

:= −
∫

R

dx

2π i
P(n − ej , x)wj (x)xnj −1.

(51)

For the remaining cases, in which one or several si vanish, one must insert the following
corresponding row substitutions in (51)

(diP (n − ei , z) diR(n − ei , z)) −→ (0 ei ). (52)

In particular,

f (0, z) =

⎛⎜⎜⎜⎝
1 R1(z) R2(z) · · · Rq(z)

0 1 0 · · · 0
...

...
...

...

0 0 0 · · · 1

⎞⎟⎟⎟⎠ , Rj (z) :=
∫

R

dx

2π i

wj(x)

x − z
.

11
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In view of (50) we have that

(Tih)(s) = h(s − ei ), (T ∗
i h)(s) :=

{
h(s + ei ) if si � −1,

0 if si = 0,

for functions h(s)(s ∈ 
II ). Note also that

TiT
∗
i = I, T ∗

i Ti = (1 − δsi ,0)I,

where I stands for the identity operator. If we think of h(s) as a column vector(
h|si=0, h|si=−1, h|si=−2, . . .

)T
, then Ti, T

∗
i are represented by the infinite-dimensional

matrices

Ti =

⎛⎜⎜⎜⎝
0 1 0 . . . . . .

0 0 1 0 . . .

0 0 0 1 . . .

...
...

...
...

...

⎞⎟⎟⎟⎠ , T ∗
i =

⎛⎜⎜⎜⎝
0 0 0 . . . . . .

1 0 0 0 . . .

0 1 0 0 . . .

...
...

...
...

...

⎞⎟⎟⎟⎠ .

4.1. The first system of string equations

The same analysis as in subsection 3.1 leads now to the equations

(TiE0f )(s, z) =
(

(z − ui(s))E0 −
∑

j

a0j (s)E0j

)
f (s, z), ∀ s ∈ 
II , (53)

where

ui(s) := a00(s) − a00(s − ei ).

Similarly one finds

(T ∗
j E0f )(s, z) = a0j (s + ej )E0j f (s, z), ∀ s ∈ 
II − ei , (54)

and taking into account that detf (s, z) ≡ 1 for all (s, z) ∈ 
II × C, from (54) we obtain

a0j (s) 
= 0, ∀ s ∈ 
II .

Now we define

vj (s) :=
⎧⎨⎩

a0j (s)

a0j (s + ej )
, s ∈ 
II − ej ,

0, for sj = 0.

(55)

Note that the functions vj (s)(s ∈ 
I ) for multiple orthogonal polynomials of type I defined
in (19) also satisfies vj (s) = 0 for sj = 0.

If we now recall that according to (52)

E0j f (s, z) = E0j , for sj = 0,

from (53) it follows that

Proposition 7. The function f satisfies the equations

zE0f (s, z) =
(

Ti + ui(s) +
∑

j

vj (s)T ∗
j

)
(E0f )(s, z) +

∑
j

δsj ,0a0j (s)E0j , (56)

for all s ∈ 
II and i = 1 . . . q.

As a consequence we get the string equations.

12
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Theorem 3. The multiple orthogonal polynomials of type II satisfy

zP (n, z) =
(

Ti + ui(−n) +
∑

j

vj (−n)T ∗
j

)
P(n, z), (57)

for all n and i = 1, . . . , q.

These equations provide a recursive method to construct multiple orthogonal polynomials
of type II. We may write (57) as

P(n + ej , z) − a00(−n + ej )P (n, z) = (z − a00(−n))P (n, z)

−
q∑

k=1,nk�1

a0k(−n)

a0k(−n − ek)
P (n − ek, z), (58)

where, according to (51), we have that

a00(−n) = coeff[P(n, z), z|n|−1],

a0k(−n) = −
∫

R

dx

2π i
P(n, x)xnkwk(x) dx.

(59)

On the other hand, multiplying equation (58) by znj wj (z), integrating on R and using the
orthogonality condition for P(n + ej , z), we obtain

a00(−n + ej )

[
−
∫

R

dx

2π i
P(n, x)xnj wj (x)

]

=
∫

R

[
(x − a00(−n))P (n, x) −

q∑
k=1,nk�1

a0k(−n)

a0k(−n − ek)
P (n − ek, x)

]
xnj wj (x) dx,

so that

a00(−n + ej ) = 1

a0j (−n)

∫
R

[
(x − a00(−n))P (n, x)

−
q∑

k=1,nk�1

a0k(−n)

a0k(−n − ek)
P (n − ek, x)

]
xnj wj (x) dx. (60)

The system (58–60) determines the multiple orthogonal polynomials of type II in terms of the
moments Ij,n.

Example. For q = 1 is clear that

P(0, z) = 1, P (1, z) = z − I1,1

I1,0
.

From (58–60) we easily obtain that

P(2, z) = z2 +
(I1,0I1,3 − I1,1I1,2)z

I 2
1,1 − I1,0I1,2

+
I 2

1,2 − I1,1I1,3

I 2
1,1 − I1,0I1,2

,

P (3, z) = z3 +

(− I1,5I
2
1,1 + I 2

1,3I1,1 + I1,2I1,4I1,1 − I 2
1,2I1,3 − I1,0I1,3I1,4 + I1,0I1,2I1,5

)
z2

I 3
1,2 − (2I1,1I1,3 + I1,0I1,4)I1,2 + I1,0I

2
1,3 + I 2

1,1I1,4

+

(− I1,4I
2
1,2 + I 2

1,3I1,2 + I1,1I1,5I1,2 + I1,0I
2
1,4 − I1,1I1,3I1,4 − I1,0I1,3I1,5

)
z

I 3
1,2 − 2I1,1I1,3I1,2 − I1,0I1,4I1,2 + I1,0I

2
1,3 + I 2

1,1I1,4

− I 3
1,3 − 2I1,2I1,4I1,3 − I1,1I1,5I1,3 + I1,1I

2
1,4 + I 2

1,2I1,5

I 3
1,2 − 2I1,1I1,3I1,2 − I1,0I1,4I1,2 + I1,0I

2
1,3 + I 2

1,1I1,4
.

13
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To determine the orthogonal polynomials for q � 2 we use the property

P(niei , z) = P (i)(ni, z),

where P (i)(ni, z) are the orthogonal polynomials for q = 1 with respect to the weight wi(x).
For example for q = 2 and j = 2, equation (58) yields

P(1, 1, z) = z2 +
(I1,2I2,0 − I1,0I2,2)z

I1,0I2,1 − I1,1I2,0
+

I1,2I2,1 − I1,1I2,2

I1,1I2,0 − I1,0I2,1
,

P (2, 1, z) = z3

+

(−I2,3I
2
1,1 + I1,4I2,0I1,1 + I1,3I2,1I1,1 − I1,2I1,3I2,0 − I1,0I1,4I2,1 + I1,0I1,2I2,3

)
z2

I2,2I
2
1,1 − I1,3I2,0I1,1 + I 2

1,2I2,0 + I1,0I1,3I2,1 − I1,2(I1,1I2,1 + I1,0I2,2)

+

(
I2,0I

2
1,3 − I1,1I2,2I1,3 − I1,0I2,3I1,3 − I1,2I1,4I2,0 + I1,0I1,4I2,2 + I1,1I1,2I2,3

)
z

I2,2I
2
1,1 − I1,3I2,0I1,1 − I1,2I2,1I1,1 + I 2

1,2I2,0 + I1,0I1,3I2,1 − I1,0I1,2I2,2

+
I2,3I

2
1,2 − I1,4I2,1I1,2 + I 2

1,3I2,1 + I1,1I1,4I2,2 − I1,3(I1,2I2,2 + I1,1I2,3)

−I2,2I
2
1,1 + I1,3I2,0I1,1 + I1,2I2,1I1,1 − I 2

1,2I2,0 − I1,0I1,3I2,1 + I1,0I1,2I2,2
.

4.2. Lax operators

Let us introduce dressing operators Gi according to

f0i (s, z) = (Giξi)(s, z), Gi :=
∑
n�0

αin(s)T n
i , αin(s) := (an+1)0i (s),

where s ∈ 
II and ξi(s, z) := zsi−1. In the matrix representation they are given by the
triangular matrices

Gi =

⎛⎜⎜⎜⎝
G00 G01 G02 . . . . . .

0 G11 G12 G13 . . .

0 0 G22 G23 . . .

...
...

...
...

...

⎞⎟⎟⎟⎠ , Gnm = αi,m−n(s)|si=−m.

The corresponding inverse operators are characterized by expansions of the form

G−1
i :=

∑
n�0

βin(s)T n
i , βi0(s) = 1

αi0(s)
= 1

a0i (s)
.

We define the Lax operators Zi by

Zi := GiT
∗
i G−1

i . (61)

It follows at once that they can be expanded as

Zi = γi(s)T ∗
i +
∑
n�0

γin(s)T n
i , (62)

where

γi(s) = αi0(s)(T ∗
i βi0)(s) = vi(s). (63)

Proposition 8. The functions f0i satisfy the equations

zf0i (s, z) = (Zif0i )(s, z) + a0i (s)δsi0, ∀ s ∈ 
II . (64)

Proof. From the definition of Gi we have

zf0i (s, z) = Gi(zξi) = Gi(T
∗
i (ξi) + δsi0) = (Zif0i )(s, z) + αi0(s)δsi0,

where we have taken into account that

T n
i (δsi0) = δsi−n,0 = 0, ∀ n � 1, s ∈ 
II . �

14
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4.3. The second system of string equations

The diagonal solutions

�(z) =
∑

α

φα(z)Eα

of condition (9) corresponding to the function g(z) of (49) are characterized by

∂zwi + φ0wi − φiwi = 0, i = 1, . . . , q.

Hence, setting φ0 ≡ 0 we obtain

�(z) =
∑

i

V ′(ci , z)Ei. (65)

The corresponding covariant derivative is

Dzf := ∂f

∂z
−
∑

i

V ′(ci , z)f Ei, (66)

so that we may write

Dz(E0f ) = ∂zf00E0 +
∑

i

(∂zf0i − V ′(ci , z)f0i )E0i . (67)

In order to take advantage of the last identity we observe that (64) can be generalized to

znf0i (s, z) = (Zn
i f0i

)
(s, z) −

n−1∑
r=0

p
(n)

(i,r)(s, z)δsi+r,0, ∀ s ∈ 
II , (68)

where the coefficients p
(n)

(i,r)(s, z) are polynomials in z. On the other hand we have that as
z → ∞

((T ∗
j )nf0α)(s, z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
O
(

1

zn

)
zs0 , for α = 0, sj � −n,

O
(

1

z

)
zsi , for α = i 
= j and sj � −n,

0, for sj > −n,

n � 1,

(
T n

i f0i

)
(s, z) = O

(
1

zn+1

)
zsi , n � 0.

(69)

We are now ready to prove the following result.

Proposition 9. The function f satisfies the equation

(Dz + H)(E0f )(s, z) =
q∑

i=1

�i(s, z)E0i , ∀ s ∈ 
II , (70)

where H is the operator

H :=
q∑

j=1

V ′(cj ,Zj )(j,+), (71)

and �i(s, z) are functions of the form

�i(s, z) =
Ni∑

n=1

p(i,n)(s, z)δsi+n,0, (72)
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with p(i,n)(s, z) being polynomials in z and Ni = degreeV (ci , z) − 2.

Proof. From (67) it follows that

Dz(E0f )(s, z) + H(E0f )(s, z) =
[
∂zf00 +

q∑
j=1

V ′(cj ,Zj )(j,+)f00

]
E0

+
q∑

i=1

[
∂zf0i +

q∑
j=1

V ′(cj ,Zj )(j,+)f0i − V ′(ci , z)f0i

]
E0i . (73)

Using (69) we find

∂zf00 +
q∑

j=1

V ′(cj ,Zj )(j,+)f00 = O
(

1

z

)
zs0 ,

∂zf0i +
∑
j 
=i

V ′(cj ,Zj )(j,+)f0i = O
(

1

z

)
zsi ,

(V ′(ci ,Zi )(i,+) − V ′(ci , z))f0i = (V ′(ci ,Zi ) − V ′(ci , z))f0i + O
(

1

z

)
zsi . (74)

On the other hand (68) implies

(V ′(ci ,Zi ) − V ′(ci , z))f0i =
∑
n�1

ncin

(
Zn−1

i − zn−1
)
f0i = �i(s, z)f0i , (75)

where

�i(s, z) :=
∑
n�1

ncin

n−2∑
r=0

p
(n−1)

(i,r) (s, z)δsi+r,0. (76)

Hence equation (73) says that

(Dz + H)(E0f )(s, z) −
q∑

i=1

�i(s, z)E0i = O
(

1

z

)
f0(s, z).

The first member of this equation is a solution of the Riemann–Hilbert problem for all s ∈ 
II

so that from proposition 2 the statement follows. �

As a consequence we deduce the string equations.

Theorem 4. The multiple orthogonal polynomials of type II satisfy

∂zP (n, z) +
q∑

j=1

V ′(cj ,Zj )(j,+)P (n, z) = 0. (77)

4.4. Orlov operators

We define the Orlov operators Mi by

Mi := Gi · (si − 1) · Ti · G−1
i . (78)

They satisfy [Zi ,Mi] = I and can be expanded as

Mi =
∑
n�1

μin(s)T n
i , (79)
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where

μi1(s) = si − 1

vi(s − ei )
. (80)

Proposition 10. The functions f0i satisfy the equations

∂zf0i (s, z) = (Mif0i )(s, z), ∀ s ∈ 
II . (81)

Proof. From the definition of Gi we have

∂zf0i = Gi((si − 1)z−1ξi) = Gi · (si − 1)(Tiξi) = Gi · (si − 1) · Ti · G−1
i f0i = Mif0i . �

5. The large-n limit

The large-n limit of multiple orthogonal polynomials is closely connected to the quasiclassical
limit of the functions f0α(s, z). In this section, we will consider these functions for large values
of the discrete parameters si

si � 1,∀ i (Type I case); si � −1,∀ i (Type II case).

Note that in particular the string equations (56) and (70) simplify since all the δ terms vanish.
As a consequence the resulting equations are the same for both types of multiple orthogonal
polynomials and can be summarized as follows:⎧⎪⎨⎪⎩

zf0α =
(

Ti + ui(s) +
∑

j

vj (s)T ∗
j

)
f0α, ∀ α, i;

∂zf00 = −Hf00, ∂zf0i = (−H + V ′(ci ,Zi ))f0i .

(82)

In order to define the large-n limit we introduce a small parameter ε, define slow variables

ti := εsi, ; t0 := −
q∑

i=1

ti , t := (t1, . . . , tq), (83)

and rescale the exponents of the weight functions (13) and (49) as

wi(ε, z) = exp

(
∓V (ci , z)

ε

)
,

where the exponent sign is negative (positive) for polynomials of type I (type II). Moreover,
we perform a continuum limit in which as ε → 0, the discrete parameters si tend to +∞ (−∞)

for the type I case (type II case) and tα become continuous variables.
The problem now is to determine solutions f0α(ε, t, z) of (82) defined for t on some

domain � of R
q , that have the quasiclassical form [16]

f0α(ε, t, z) = zδ0α−1 exp

(
1

ε
Sα

)
, Sα = tα log z +

∑
n�0

1

zn
Sαn, (84)

where

Sαn =
∑
k�0

εk
S

(k)
αn (t), n � 0; S00 ≡ 0.

Note the leading behaviour

f0α(ε, t, z) = zδ0α−1 exp

(
1

ε
Sα + O(1)

)
, as ε → 0, (85)
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where

Sα(t, z) := tα log z +
∑
n�0

1

zn
Sαn(t), Sαn = S

(0)
αn , S00 ≡ 0, (86)

are the classical action functions.
In terms of slow variables the operators Ti and T ∗

i become

Ti = exp(−ε∂i), T ∗
i = T −1

i = exp(ε∂i), ∂i := ∂

∂ti
, (87)

so that they define translation operators T ±1
i F (t) = F(t∓εei ). Hence, we have the following

useful relations

T ±1
i f0α = exp(∓∂iSα + O(ε))f0α. (88)

It is now a simple matter to deal with the corresponding dressing and Lax–Orlov operators.
Indeed, expressing the functions (84) in the form

f0μ =
⎛⎝δ0μ +

∑
n�1

αμn(ε, t)

zn

⎞⎠ exp

(
tμ

ε
log z

)
,

we have

f0i = Gi exp

(
ti

ε
log z

)
, Gi :=

∑
n�1

αin(ε, t)T
n
i ,

Zi := GiT
−1
i G−1

i , Mi := Gi · ti · Ti · G−1
i .

We can also introduce Lax–Orlov operators associated with f00. In fact we may do it in q
different ways

f00 = G
(i)
0 exp

(
t0

ε
log z

)
, G

(i)
0 = 1 +

∑
n�1

α0n(ε, t)T
−n
i ,

Z(i)
0 := G

(i)
0 Ti

(
G

(i)
0

)−1
, M(i)

0 := G
(i)
0 · t0 · T −1

i · (G(i)
0

)−1
.

In terms of Lax–Orlov operators and taking into account the assumption (84) the system
of string equations (82) becomes⎧⎪⎨⎪⎩

zf0α = Zαf0α =
(

Tj + uj (ε, t) +
∑

k

vk(ε, t)T
−1
k

)
f0α, ∀ α, j ;

ε∂zf00 = M0f00 = −Hf00, ε∂zf0j = Mj f0j = (−H + V ′(cj ,Zj ))f0i ,

(89)

for all choices Z0 = Z(i)
0 ,M0 = M(i)

0 . It follows from (84) that the recurrence coefficients
uj and vj can be written as quasiclassical expansions of the form

ui = ui(t) +
∞∑

n=1

εnui,n(t), vi = vi(t) +
∞∑

n=1

εnvi,n(t). (90)

5.1. Leading behaviour and hodograph equations

Our next aim is to characterize the leading behaviour of the solutions f0α of (89). More
concretely we are going to see how the leading terms

u := (u1(t), . . . , uq(t)), v := (v1(t), . . . , vq(t)),

of the recurrence coefficients (90) are determined by a system of hodograph-type equations.
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In order to formulate the classical limits (zα,mα) of the Lax–Orlov operators (Zα,Mα)

we observe that as a consequence of the first group of string equations in (89) we have that

(Ti + ui (ε, t))f0α = (Tj + uj (ε, t))f0α, ∀ i, j, α. (91)

Then, using (88) we obtain

exp(−∂iSα(t, z)) + ui(t) = exp(−∂jSα(t, z)) + uj (t), ∀ i, j. (92)

In view of these identities we define zα(t, p) by the implicit equations

p = exp(−∂iSα(t, zα(t, p))) + ui(t). (93)

Note that according to (92) these definitions are independent of the value of the index i used
in (93). Moreover, (93) implies

∂iSα(t, zα) = −log(p − ui(t)). (94)

From the asymptotic expansion (86) of the action functions Sα and the defining equations (93)
it is straightforward to prove that the Lax functions can be expanded as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

z0 = p +
∞∑

n=1

v0n(t)

pn
, p → ∞,

zi = vi(t)

p − ui(t)
+

∞∑
n=0

vin(t)(p − ui(t))
n, p → ui(t).

(95)

On the other hand, we define the corresponding Orlov functions mα(t, zα) by

mα(t, zα) := ∂zSα(t, zα). (96)

The definitions (93) and (96) provide the classical limits of the Lax–Orlov operators. Indeed,
from (89) it follows at once that

(Zαf0α)(t, zα(t, p)) = zα(t, p)f0α(t, zα(t, p)),

(Mαf0α)(t, zα(t, p)) = (mα + O(ε))f0α(t, zα(t, p)),
(97)

for all choices of Z0 = Z(i)
0 ,M0 = M(i)

0 . In particular this means that all the pairs of
Lax–Orlov operators

(
Z(i)

0 ,M(i)
0

)
have the same classical limit given by (z0(t, p),m0(t, p)).

Theorem 5. The Lax–Orlov functions satisfy the classical string equations{
z0 = z1 = · · · = zq = E(u,v, p),

m0 = m1 − V ′(c1, z1) = · · · = mq − V ′(cq, zq) = −H(u,v, p),
(98)

where

E := p +
q∑

k=1

vk(t)

p − uk(t)
, H :=

q∑
k=1

V ′(ck, zk)(k,+), (99)

and ( )(k,+) stand for the projections of power series in (p − uk)
n, (n ∈ Z) on the subspaces

generated by (p − uk)
−n(n � 1).

Proof. Taking into account that

T n
j f0α(t, zα(p, t)) = ((p − uj )

n + O(ε))f0α(t, zα(t, p)), n = ±1,±2, . . . ,

it is easy to see that the equations (98) are the classical limit (ε → 0) of the system (89). �
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In view of the first group of equations in (98), it is clear that the functions u and v are the
only unknowns for determining the Lax–Orlov functions. However, the Lax-Orlov functions
must satisfy the correct asymptotic expansions. Obviously, the functions zα = E satisfy (95).
Nevertheless, equation (86) requires the Orlov functions to satisfy

mα = tα

zα

−
∑
n�1

nSαn(t)

zn+1
α

, as zα → ∞, (100)

and this behaviour must be compatible with the second group of equations in (98)

m0 = −H(u,v, p), mi = V ′(ci , E) − H(u,v, p), (101)

where we have already inserted the substitutions zi = E. Let us analyse equations (101) in
terms of series expansions as p → ∞ for m0, and as p → ui(t) for mi . If we take into
account that

1

z0
= 1

p
+ O

(
1

p2

)
, H = O

(
1

p

)
, p → ∞,

1

zi

= O((p − ui)),
1

p − uj

= O(1);

V ′(ci , E) − H = O(1), j 
= i, p → ui(t),

then the consistency between (101) and (100) requires∮
γ0

dp

2iπ
H(u,v, p) = −t0, (102)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∮

γi

dp

2iπ

V ′(ci , E(u,v, p)) − H(u,v, p)

p − ui

= 0∮
γi

dp

2iπ

V ′(ci , E(u,v, p)) − H(u,v, p)

(p − ui)2
= ti

vi

.

(103)

These conditions are obtained by comparing coefficients of p−1 and (p − ui(t))
n with

(n = 0, 1) in the equations (101) for m0 and mi , respectively. Here γi are positively oriented
small circles around p = ui such that p = uj is outside γi for all j 
= i, and γ0 is a large
positively oriented circle that encircles all the γi (see figure 1).

Identifying the coefficients of the remaining powers p−n and (p − ui(t))
n in (101)

determines the Orlov functions in terms of (u,v).
The equation (102) is a consequence of the second group of equations in (103) and the

fact that t0 := −∑i ti . To see this, note that∮
γ0

H(p) dp =
∮

γ0

H(p)∂pE(p) dp,∮
γi

(V ′(ci , E(p)) − H(p))
vi

(p − ui)2
dp = −

∮
γi

(V ′(ci , E(p)) − H(p))∂pE(p) dp.

Hence

−
∮

γ0

H(p) dp +
∑

i

∮
γi

(V ′(ci , E(p)) − H(p))
vi

(p − ui)2
dp

= −
∮

γ0

H(p)∂pE(p) dp −
∑

i

∮
γi

(V ′(ci , E(p)) − H(p))∂pE(p) dp

= −
∮

γ0−
∑

i γi

H (p)∂pE(p) dp −
∑

i

∮
γi

V ′(ci , E(p))∂pE(p) dp = 0,
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Figure 1. Circles γα in the hodograph equations.

where we have taken into account that V ′(ci , E(p))∂pE(p) = ∂p(V (ci , E(p))). Moreover,
H(p)∂pE(p) is a rational function of p with poles at the points pi = ui only and

γ0 −
∑

i

γi ∼ 0 in C \ {p1, . . . , pq}.

Therefore we are finally led to the system (103) of 2q equations for determining the 2q

functions ui, vi . These equations are of hodograph type as they depend linearly on the
parameters t and ci . For example the first few terms are⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ci1 + 2ci2ui +
∑
j 
=i

(ci2 − cj2)vj

ui − uj

+ · · · = 0

2ci2 −
∑
j 
=i

(ci2 − cj2)vj

(ui − uj )2
+ · · · = ti

vi

.

(104)

5.2. Connection with the Whitham hierarchy

If we assume that the coefficients ci of exponents of the weight functions (13) and (49) are
free parameters and write them in the form

ci = t0 − ti , tα = (tα1, . . . , tαn, . . .) ∈ C
∞, (105)

then, as we are going to see, the solution of (98) turns out to determine a solution of the
Whitham hierarchy of dispersionless integrable systems [11].

Let us introduce the modified Orlov functions

m̃α = V ′(tα, zα) + mα. (106)

It is clear that (zα, m̃α) solve the system{
z0 = z1 = · · · = zq,

m̃0 = m̃1 = · · · = m̃q .
(107)

Moreover, they are rational functions of p with poles at the points pi = ui only. Furthermore,
they satisfy the asymptotic properties (95) and

m̃α =
∑
n�1

ntαnz
n−1
α +

tα

zα

−
∑
n�1

nSαn(t)

zn+1
α

, as zα → ∞.
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Thus, the functions (zα, m̃α) satisfy all the conditions of theorem 1 of [15] and, as a
consequence, they satisfy the equations of the Whitham hierarchy

∂zα

∂tμn

= {�μn, zα}, ∂m̃α

∂tμn

= {�μn, m̃α}, (108)

where the Poisson bracket is given by

{F,G} := ∂F

∂p

∂G

∂x
− ∂F

∂x

∂G

∂p
, x := t01,

and the Hamiltonian functions are

�μn :=
{(

zn
μ

)
(μ,+)

, n � 1,

−log(p − ui), n = 0, μ = i = 1, . . . , q.
(109)

Here (·)(0,+) stands for the projector on {pn}∞n=0.
In this way we conclude that (zα, m̃α), as functions of the coupling constants ci = t0 − ti ,

determine a reduced solution of the Whitham hierarchy. This property is in complete agreement
with the results of recent works [16] which prove that the universal Whitham hierarchy can be
obtained as a particular dispersionless limit of the multi-component KP hierarchy. Moreover,
as it has been observed in [27], appropriate deformations of the Riemann–Hilbert problems for
multiple orthogonal polynomials determine solutions of the multi-component KP hierarchy.
In fact these deformations correspond to the flows induced by changes in the parameters tα .
Indeed, for both types of multiple orthogonal polynomials, (105) implies

∂tαn
g = [znEα, g].

Therefore the covariant derivatives

Dαnf := ∂αnf + znf Eα

are symmetries of the corresponding Riemman–Hilbert problems. Hence, using proposition 2
one concludes that

∂αnf + (znf Eαf −1)−f = 0, (110)

where ( )− stands for the projections of power series in zk, (k ∈ Z) on the subspaces generated
by z−k(k � 1). Equations (110) constitute the linear system of the multi-component KP
hierarchy.

6. Applications: random matrix models and non-intersecting Brownian motions

As we have seen, the multiple orthogonal polynomials of type I are the elements f0i of the
fundamental solution of their associated RH problem. Thus, in the quasiclassical limit we
have

Ai(n, z) ∼ 1

z
exp

(
1

ε
Si(t, z))

)
, as ε → 0,

where Si = Si(t, z) are the classical action functions defined in (86). Hence

ε∂z log Ai(n, z) ∼ ∂zSi(t, z) − ε

z
= mi(t, z) − ε

z
. (111)

On the other hand, if we denote by xi the roots of Ai(n, z) we have

∂z log Ai(n, z) =
ni−1∑
i=1

1

z − xi

.
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Thus if we assume that in the large-n limit the roots of Ai are distributed with a continuous
density ρi = ρi(x) on some compact (possibly disconnected) support Ii ⊂ R

ε

ni−1∑
i=1

1

z − xi

∼
∫

Ii

ρi(x)

z − x
dx, as ε → 0 (112)

from (111) and (112) we deduce the important relation

mi(z) =
∫

Ii

ρi(x)

z − x
dx, (113)

where mi, Ii , and ρi depend on the slow variables t. This means that the Orlov functions mi

are the Cauchy transforms of the root densities ρi . Hence, they determine the distribution of
roots in the large-n limit according to

mi+(x) − mi−(x) = −2iπρi(x), x ∈ Ii . (114)

Moreover, from (100) we see that∫
Ii

ρi(x) dx = ti . (115)

On the other hand, the multiple orthogonal polynomials of type II represent the element
f00 of their associated RH problem. Therefore, in the quasiclassical limit we have

P(n, z) ∼ exp

(
1

ε
S0(t, z)

)
, as ε → 0.

Thus if we assume that in the large-n limit the roots of P(n, z) tend to be distributed with a
continuous density ρ0 = ρ0(x) on some compact support I0 ⊂ R, we deduce

m0(z) =
∫

I0

ρ0(x)

z − x
dx, (116)

where m0, I0 and ρ0 depend on the slow variables t. Thus the Orlov function m0 is the Cauchy
transform of the density ρ0 and therefore

m0+(x) − m0−(x) = −2iπρ0(x), x ∈ I0. (117)

Note also that ∫
I0

ρ0(x) dx = t0. (118)

The string equations (98) also provide useful information to determine the limiting
supports and the root densities. They imply

m0(z) = −H(p0(z)), mi(z) = V ′(ci , z) − H(pi(z)),

where pα(z) denote the q + 1 inverses of the map

z(p) := E(p) = p +
q∑

k=1

vk(t)

p − uk(t)
,

such that

p0(z) = z + O
(

1

z

)
, pi(z) = ui + O

(
1

z

)
; as z → ∞.

Therefore (114) and (117) reduce to

H(pα+(x)) − H(pα−(x)) = 2iπρα(x), x ∈ Iα. (119)
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In general the limiting supports Iα may consist of several disconnected segments

Iα =
dα⋃

k=1

Iαk

which, due to (119), constitute the branch cuts of the functions H(pα(z)). As a consequence
the end points of the segments Iαk are the branch points of these functions, which are in turn
given by the critical points xi of the function z(p) = E(p)

xi = E(qi) ∈ R, ∂pE(qi) = 0. (120)

6.1. The Hermitian matrix model

For q = 1 the multiple orthogonal polynomials of type II reduce to the orthogonal polynomials
on the real line associated with the weight function w = exp V (c, z). These polynomials are
connected to the random matrix model of n × n Hermitian matrices [1, 2]

Zn =
∫

dM exp(Tr V (c,M)), (121)

through the crucial relation

Pn(z) = E[det(z − M)], (122)

where E denotes the expectation value with respect to the probability measure determined
by (121). In the large-n limit the root density ρ0 of the family of polynomials represents the
eigenvalue density of the matrix model.

The Hermitian matrix model provides an appropriate example to illustrate all the aspects
of our method for characterizing the quasiclassical limit. In this case we set ε := 1/n, t0 = 1
and we have

z(p) = E(u, v, p) = p +
v

p − u
.

Here u and v depend on the coupling constants c = (c1, c2, . . .) and can be determined by
means of the hodograph equations (102–103)∮

γ0

dp

2iπ
H(p) = −1,

∮
γ1

dp

2iπ

V ′(c, E(p)) − H(p)

p − u
= 0.

By introducing the change of variable p − u → p these equations are equivalent to the
well-known system [1]∮

γ

dp

2iπ
V ′
(

c, p + u +
v

p

)
= −1,

∮
γ

dp

2iπp
V ′
(

c, p + u +
v

p

)
= 0, (123)

which characterizes the spherical limit in the Hermitian matrix model of 2D gravity. Here γ

is a large positively oriented circle around the origin.
The critical points of E are q± = u ± √

v, so that the support of eigenvalues is

I = [x−, x+], x± := u ± 2
√

v. (124)

We use (119) to determine the density of eigenvalues according to

H(p0+(x)) − H(p0−(x)) = 2iπρ0(x), x ∈ [x−, x+]. (125)

Furthermore, the two inverses of z(p) are

p0(z) := 1
2 (z + u +

√
(z − x−)(z − x+)), p1(z) := 1

2 (z + u −
√

(z − x−)(z − x+))

(126)
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and we have

H(p0(z)) = V ′(c, z(p))(1,+)|p=p0(z).

Now, using the identities
v

p − u
= z − p, p2 = (u + z)p − zu − v,

it is clear that there exist polynomials αk(z) and βk(z) satisfying

(z(p)k)(1,+)|p=p0(z) = αk(z) + βk(z)p0(z), (z(p)k)(1,+)|p=p1(z) = αk(z) + βk(z)p1(z).

(127)

In particular, taking into account that

p0(z) = z + O
(

1

z

)
, p1(z) = u + O

(
1

z

)
; as z → ∞,

from (127) we deduce

βk(z) = −
(

zk

p0 − p1

)
⊕

= −
(

zk

√
(z − x−)(z − x+)

)
⊕

, (128)

where ( )⊕ means the projection of power series in zn, (n ∈ Z) on the subspace generated by
zn, (n � 0). Hence it follows that

H(p0(z)) =
∑
k�1

kck(αk−1(z) + βk−1(z)p0(z)),

and therefore we obtain

ρ(x) = 1

2iπ

∑
k�1

kckβk−1(x)(p0+(x) − p0−(x))

= − 1

2π

(
V ′(c, x)√

(x − x−)(x − x+)

)
⊕

√
(x − x−)(x+ − x),

which represents the well-known eigenvalue density for the Hermitian model in the one-cut
case.

6.2. Gaussian models with an external source and non-intersecting Brownian motions

For q > 1 the multiple orthogonal polynomials of type II are connected to the Gaussian
Hermitian matrix model with an external source term AM [6–9], where A is a fixed diagonal
n × n real matrix. The partition function of this model is given by

Zn =
∫

dM exp

(
−Tr

(
1

2
M2 − AM

))
. (129)

It turns out that if the eigenvalues of A are given by aj , (j = 1, . . . , q) with multiplicities nj ,
then the expectation values

P(n, z) = E[det(z − M)], n := (n1, . . . , nq), (130)

are multiple orthogonal polynomials with respect to the Gaussian weights

wj(x) = exp
(
ajx − 1

2x2
)
.

These matrix models are deeply connected to one-dimensional non-intersecting Brownian
motion [23–25]. More concretely, the joint probability density for the eigenvalues (λ1, . . . , λn)

of M is the same as the probability density at time t ∈ (0, 1) for the positions (x1, . . . , xn)
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of n non-intersecting Brownian motions starting at the origin at t = 0 and forming q groups
ending at q fixed points bi, (i = 1, . . . , q) at t = 1. The corresponding dictionary is

λj = xj√
t (1 − t)

, ak = bk

√
t

1 − t
.

We discuss next an example of application to the large-n limit of non-intersecting
Brownian motions [6–9] and rederive some of the results of [7]. We consider an even
number n non-intersecting Brownian motions ending at two points ±b with n1 = n2 = n/2
[7]. In this case the slow variables take the values t1 = t2 = −1/2. Moreover, we have

V (c1, z) = az − z2

2
, V (c2, z) = −az − z2

2
, a := b

√
t

1 − t
,

and

z(p) = E(p) = p +
v1

p − u1
+

v2

p − u2
, H(p) = − v1

p − u1
− v2

p − u2
= p − z(p).

(131)

Using the hodograph equations (104) one finds

u1 = a, u2 = −a, v1 = v2 = 1
2 ,

so that

z(p) = p3 + (1 − a2)p

p2 − a2
.

The corresponding algebraic function p = p(z) satisfies the Pastur equation [7, 26]

p3 − zp2 + (1 − a2)p + a2z = 0,

which defines a three-sheeted Riemann surface. The restrictions of p(z) to the three sheets
are the functions pα(z) characterized by the asymptotic behaviour

p0(z) = z + O
(

1

z

)
, pi(z) = ui + O

(
1

z

)
, i = 1, 2; as z → ∞.

There are four critical points of z(p) which give rise to four branch points ±x1,±x2 in the
z-plane where

x1 = q1

√
1 + 8a2 + 3√
1 + 8a2 + 1

, x2 = q2

√
1 + 8a2 − 3√
1 + 8a2 − 1

,

q1,2 =
√

1

2
+ a2 ± 1

2

√
1 + 8a2.

It is easy to see that x1 is real for all a � 0, while x2 is real for a � 1 (x2 < x1) and purely
imaginary for 0 < a < 1. Now, from (125) and taking into account that H(p) = p − z(p)

we deduce that the eigenvalue density is given by

ρ0(x) = 1

2iπ
(H(p0+(x)) − H(p0−(x)) = 1

2iπ
(p0+(x) − p0−(x)), x ∈ I0. (132)

Using Cardano’s formula for p0 one finds

ρ0(x) = 2x2 + 6(a2 − 1) − 3
√

2(r(x) −
√

r(x)2 − 4s(x)3)2/3

25/3
√

3π
3

√
r(x) −

√
r(x)2 − 4s(x)3

,

where

r(x) := −2x3 + 18a2x + 9x, s(x) := x2 + 3(a2 − 1).

The form of the support I0 depends on the analytic properties of the function p0(z) (see [6–9]):
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Figure 2. Limit support for Brownian motions with two symmetric endpoints for b = 1.

(This figure is in colour only in the electronic version)

3 2 1 0 1 2 3
x

0.1

0.2

0

3 2 1 0 1 2 3
x

0.1

0.2

0

3 2 1 0 1 2 3

x

0.1

0.2

0

3 2 1 0 1 2 3
x

0.1

0.2

0

ρ ρ

ρ ρ

Figure 3. The density of Brownian motions ρ0(x) for a = 1/2, 3/4, 1 and 3/2, respectively.

(a) For 0 < a � 1 the function p0 is analytic in C − [−x1, x1] and I0 = [−x1, x1].
(b) For a > 1 the function p0 is analytic in C − ([−x1,−x2] ∪ [x2, x1]) and I0 =

[−x1,−x2] ∪ [x2, x1].

Figures 2 and 3 illustrate the evolution of the support and the density of Brownian motions.
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